

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-02/0024 vom 2. Januar 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem fischer FIS V

Verbunddübel zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

34 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601

ETA-02/0024 vom 13. Februar 2017

Z88262.19

Europäische Technische Bewertung ETA-02/0024

Seite 2 von 34 | 2. Januar 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-02/0024

Seite 3 von 34 | 2. Januar 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Injektionssystem fischer FIS V" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS V und einem Stahlteil gemäß Anhang A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung für statische und quasi-statische Einwirkungen	Siehe Anhang C 1, C 2, C 5 bis C 8
Charakteristischer Widerstand unter Querbeanspruchung für statische und quasi-statische Einwirkungen	Siehe Anhang C 1 bis C 4
Verschiebungen für statische und quasi-statische Einwirkungen	Siehe Anhang C 9 bis C 10
Charakteristischer Widerstand für seismische Leitungskategorie C1und C2 und Verschiebungen	Siehe Anhang C 11 bis C 14
Dauerhaftigkeit	Siehe Anhang B 2

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Europäische Technische Bewertung ETA-02/0024

Seite 4 von 34 | 2. Januar 2020

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

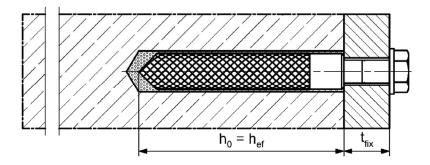
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

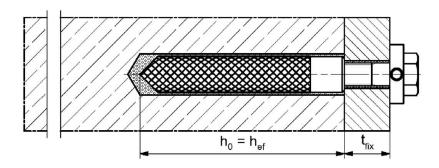
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 2. Januar 2020 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt


Einbauzustände Teil 1 fischer Ankerstange Vorsteckmontage $h_0 = h_{ef}$ Durchsteckmontage (Ringspalt mit Mörtel verfüllt) $\mathsf{t}_{\mathsf{fix}}$ $h_0 = h_{ef}$ Vor- oder Durchsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt) $h_0 = h_{ef}$ Abbildungen nicht maßstäblich h_0 = Bohrlochtiefe hef = Effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils fischer Injektionssystem FIS V Anhang A 1 Produktbeschreibung Einbauzustände Teil 1


Einbauzustände Teil 2

fischer Innengewindeanker RG MI

Vorsteckmontage

Vorsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

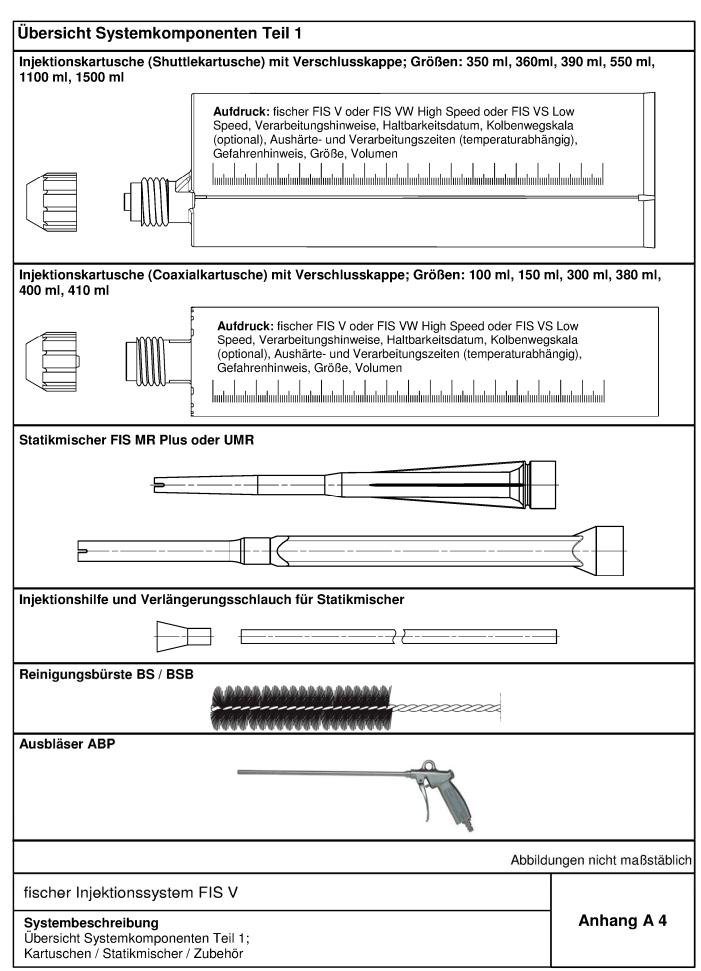
 h_0 = Bohrlochtiefe

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS V

Produktbeschreibung


Einbauzustände Teil 2

Anhang A 2

Einbauzustände Teil 3 Betonstahl fischer Bewehrungsanker FRA Vorsteckmontage h_0 Durchsteckmontage (Ringspalt mit Mörtel verfüllt) h_0 Abbildungen nicht maßstäblich h_0 = Bohrlochtiefe hef = Effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils fischer Injektionssystem FIS V Anhang A 3 Produktbeschreibung Einbauzustände Teil 3

Stahlteile

Übersicht Systemkomponenten Teil 2 fischer Ankerstange Größen: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer Innengewindeanker RG MI Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter Verfüllscheibe FFD mit Injektionshilfe **Betonstahl** Nenndurchmesser: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 28\$ fischer Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich fischer Injektionssystem FIS V Anhang A 5 Systembeschreibung Übersicht Systemkomponenten Teil 2;

Teil	Bezeichnung		Mat	erial	
1	Injektionskartusche		Mörtel, Härt	er, Füllstoffe	
	Stahlart	Stahl, verzinkt	Nichtroste	nder Stahl 1)	Hochkorrosions- beständiger Stahl C ²⁾
2	Ankerstange		Festigk 50, 70 EN ISO 3 1.4401; 1.4 1.4571; 1.4 1.4062, 1.4 EN 100 f _{uk} ≤ 100 A ₅ > 12% B		
		seismischen Le			<u> </u>
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4578 1.4439	; 1.4404; 3;1.4571; ; 1.4362; 88-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 µm, ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 µm EN ISO 10684:2004	50, 70 EN ISO 3 1.4401; 1.4 1.4571; 1.4	eitsklasse oder 80 506-1:2009 !404; 1.4578; !439; 1.4362; 88-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:1999 A2K	EN ISO 3 1.4401; 1.4 1.4571; 1.4	tsklasse 70 506-1:2009 !404; 1.4578; !439; 1.4362; 38-1:2014)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
6	Handelsübliche Schraube oder Anker-/ Gewindestange für fischer Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:1999 A2K A₅ > 8 % Bruchdehnung	EN ISO 3 1.4401; 1.4 1.4571; 1.4 EN 100	tsklasse 70 506-1:2009 404; 1.4578; 439; 1.4362; 88-1:2014 ruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung
7	Verfüllscheibe FFD ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4571; 1.4	1404; 1.4578; 1439; 1.4362; 88-1:2014	1.4565;1.4529; EN 10088-1:2014
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom Rir gemäß NDP oder NCL der EN $f_{uk} = f_{tk} = k \cdot f_{yk}$			k
9	fischer Bewehrungsanker FRA	se 70 oder 80 :2009 , 1.4571, 1.4578, 1.4439, EN 10088-1:2014 ¹⁾ , EN 10088-1:2014 ²⁾			
		1:2014 der Korrosionswiderst 1:2014 der Korrosionswiderst			
fisc	her Injektionssystem	n FIS V			
	duktbeschreibung				Anhang A 6

Spezifizierung des Verwendungszwecks (Teil 1) **Tabelle B1.1:** Übersicht Nutzungs- und Leistungskategorien Beanspruchung der Verankerung FIS V mit ... fischer Betonstahl fischer Ankerstange Innengewinde-Bewehrungsanker anker RG MI FRA *WWW.WWW.WWW* Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer (fischer FHD, Heller Bohrernenndurchmesser (do) 'Duster Expert"; 12 mm bis 35 mm Bosch "Speed Clean"; Hilti "TE-CD, TE-YD") Tabelle: Tabelle: Tabelle: Tabelle: ungerissenen Alle Alle Alle Statische und C1.1 C2.1 C3.1 C3.2 Beton Größen Größen Größen Alle C4.1 C4.1 C4.1 C4.1 quasi-statische Größen gerissenen M8 bis φ 10 to Belastung, im C5.1 C6.1 C7.1 C8.1 M30 ф 28 Beton C9.1 C9.2 C10.1 C10.2 Tabelle: M10 Seismische C11.1 C11) bis Leistungs-C12.1 M30 kategorie C13.1 (nur Hammer-M12 Tabelle: bohren mit C11.1 M16 Standardbohrer / C21) C12.1 M20 Hohlbohrer) M24 C14.1 Trockener oder nasser alle Größen 11 Beton Nutzungskategorie Wasser-12 M 12 bis M 30 Alle Größen gefülltes Bohrloch D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) Einbaurichtung $T_{i,min} = -10 \, ^{\circ}\text{C} \, \text{bis} \, T_{i,max} = +40 \, ^{\circ}\text{C}$ Einbautemperatur Temperatur-(maximale Kurzzeittemperatur +80 °C; -40 °C bis +80 °C bereich I maximale Langzeittemperatur +50 °C) Gebrauchstemperaturbereiche Temperatur-(maximale Kurzzeittemperatur +120 °C; -40 °C bis +120 °C bereich II maximale Langzeittemperatur +72 °C) 1) Nicht geeignet für FIS VW High Speed oder FIS VS Low Speed fischer Injektionssystem FIS V Anhang B 1 Verwendungszweck Spezifikationen (Teil 1)

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 6 Tabelle 6.1.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit:
 EN 1992-4:2018 und EOTA Technical Report TR 055.

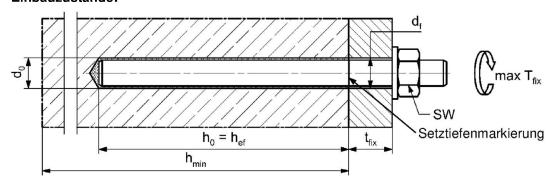
 Die Verankerungen sind außerhalb kritischer Bereiche (z.B. plastischer Gelenke) der Betonkonstruktion anzuordnen. Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht durch diese Europäisch Technische Bewertung (ETA) abgedeckt.

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- · Im Fall von Fehlbohrungen sind diese zu vermörteln
- Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Injektionssystem FIS V	
Verwendungszweck Spezifikationen (Teil 2)	Anhang B 2

Tabelle B3.1: N	Tabelle B3.1: Montagekennwerte für Ankerstangen											
Ankerstangen			Gewinde	М6	М8	M10	M12	M16	M20	M24	M27	M30
Schlüsselweite		SW		10	13	17	19	24	30	36	41	46
Bohrernenndurchme	sser	d ₀		8	10	12	14	18	24	28	30	35
Bohrlochtiefe		h_0						$h_0 = h_e$	f			
Effektive		h _{ef, min}		50	60	60	70	80	90	96	108	120
Verankerungstiefe		h _{ef, max}		72	160	200	240	320	400	480	540	600
Minimaler Achs- und Randabstand		Smin = Cmin	[mm]	40	40	45	55	65	85	105	125	140
Durchmesser des Vorsteck- montage		df		7	9	12	14	18	22	26	30	33
Durchgangsloch im - Anbauteil	Durchsteck- montage	df		9	12	14	16	20	26	30	33	40
Minimale Dicke des Betonbauteils h _{min}				ı	1 _{ef} + 30	(≥100)		ł	1 _{ef} + 2d	0	
Maximales Montaged	drehmoment	max T _{fix}				200	300					



Prägung (an beliebiger Stelle) fischer Ankerstange:

Festigkeitsklasse 8.8, Nichtrostender Stahl A4 Festigkeitsklasse 80 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 80: ●

Nichtrostender Stahl A4 Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 50: ● Alternativ: Farbmarkierung nach DIN 976-1

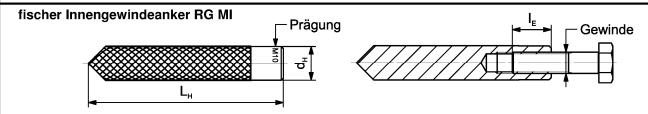
Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 6, Tabelle A6.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

Abbildungen nicht maßstäblich

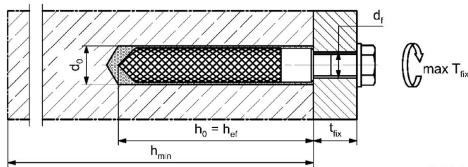
fischer Injektionssystem FIS V


Verwendungszweck
Montagekennwerte Ankerstangen

Anhang B 3

Tabelle B4.1: Montagekennwerte sowie min. Achs- und Randabstände für fischer Innengewindeanker RG MI

Innengewindeanker RG MI	Ge	winde	М8	M10	M12	M16	M20
Hülsendurchmesser	$d_{nom} = d_H$		12	16	18	22	28
Bohrernenn- durchmesser	d ₀		14	18	20	24	32
Bohrlochtiefe	h ₀				$h_0 = h_{\text{ef}} = L_{\text{H}}$		
Effektive Verankerungstiefe ($h_{ef} = L_H$)	h _{ef}		90	90	125	160	200
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	55	65	75	95	125
Durchmesser des Durch- gangsloch im Anbauteil	d _f		9	12	14	18	22
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45
Minimale Einschraubtiefe	I _{E,min}		8	10	12	16	20
Maximales Montagedrehmoment	max T _{fix}	[Nm]	10	20	40	80	120


Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich A4; z.B.: M10 A4

Hochkorrosionsbeständiger Stahl → zusätzlich C; z.B.: M10 C

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 6, Tabelle A6.1 entsprechen

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V

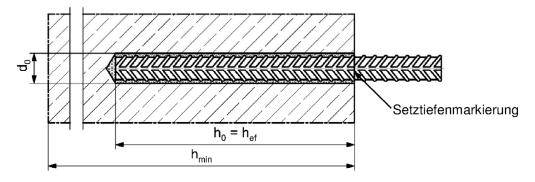
Verwendungszweck

Montagekennwerte fischer Innengewindeanker RG MI

Anhang B 4

Tabelle B5.1: Montagekennwerte für Betonstahl

Stabnenndurchmesser		ф	8 ¹⁾	10 ¹⁾	12	1)	14	16	20	25	28
Bohrernenndurchmesser	d₀		10 12	12 14	14	16	18	20	25	30	35
Bohrlochtiefe	h ₀			$h_0 = h_{ef}$							
Effektive	h _{ef,min}	[mm]	60	60	70)	75	80	90	100	112
Verankerungstiefe	h _{ef,max}	[]	160	200	24	0	280	320	400	500	560
Mindestdicke des Betonbauteils	h _{min}			lef + 30 ≥ 100)				h∈	ef + 2d ₀		


¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V

Verwendungszweck

Montagekennwerte Betonstahl

Anhang B 5

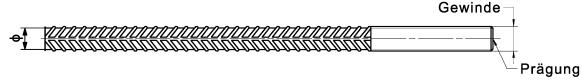
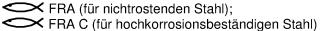
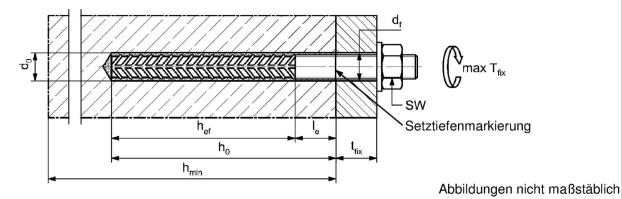


Tabelle B6.1:	Montagekennwerte sowie min. Achs- und Randabstände für fischer
	Bewehrungsanker FRA


Bewehrungsanke	r FRA	Ge	ewinde	ewinde M12 ¹⁾		M16	M20	M24
Stabnenndurchme	sser	ф		1	2	16	20	25
Schlüsselweite		SW		1	9	24	30	36
Bohrernenndurchn	nesser	d ₀		14	16	20	25	30
Bohrlochtiefe		h ₀				h _{ef}	+ le	
Effektive		h _{ef,min}		7	0	80	90	96
Verankerungstiefe		h _{ef,max}		14	10	220	300	380
Abstand Betonobe Schweißstelle	rfläche zur	le	[100				
Minimaler Achs- und Randabstand		Smin = Cmin	[mm] 	5	5	65	85	105
Durchmesser des	Vorsteck- montage	≤ d _f		1	4	18	22	26
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		1	8	22	26	32
Mindestdicke des Betonbauteils		h _{min}		$\begin{vmatrix} h_0 + 30 \\ (\ge 100) \end{vmatrix}$ $h_0 + 2d_0$				
Maximales Montagedrehmom	ent	max T _{fix}	[Nm]	4	0	60	120	150

¹⁾ Beide Bohrernenndurchmesser sind möglich



Prägung stirnseitig z. B.:

Einbauzustände:

fischer Injektionssystem FIS V

Verwendungszweck

Montagekennwerte fischer Bewehrungsanker FRA

Anhang B 6

Tabelle B7.1: Kennwerte der Reinigungsbürsten BS / BSB (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Stahlbürsten- durchmesser	d _b	[mm]	0	11	14	16	2	0	25	26	27	30	4	0

Tabelle B7.2 Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

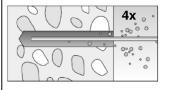
Temperatur im Verankerungsgrund	Maxim	ale Verarbeitur t _{work}	ngszeit	Minimale Aushärtezeit ¹⁾ t _{cure}					
[°C]	FIS VW High Speed	FIS V	FIS VS Low Speed	FIS VW High Speed	FIS V	FIS VS Low Speed			
-10 bis -5 ²⁾	-	-	-	12 h	-	-			
-5 bis -0 ²⁾	5 min	-	-	3 h	24 h	-			
±0 bis +5 ²⁾	5 min	13 min	-	3 h	3 h	6 h			
+5 bis +10	3 min	9 min	20 min	50 min	90 min	3 h			
+10 bis +20	1 min	5 min	10 min	30 min	60 min	2 h			
+20 bis +30	-	4 min	6 min	-	45 min	60 min			
+30 bis +40	-	2 min	4 min	-	35 min	30 min			

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

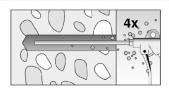
fischer Injektionssystem FIS V	
Verwendungszweck	Anhang B 7
Kennwerte der Reinigungsbürsten	
Verarbeitungs- und Aushärtezeiten	


²⁾ Minimale Kartuschentemperatur +5°C

Montageanleitung Teil 1

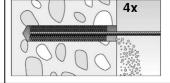

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

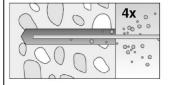


Bohrloch erstellen.
Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B3.1**, **B4.1**, **B5.1**, **B6.1**

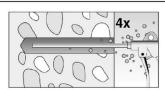
2



Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen


Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

3



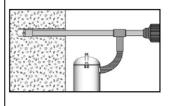
Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B7.1**

4

Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen

Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 5 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

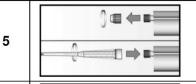
Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen B3.1, B4.1, B5.1, B6.1**

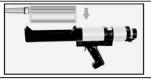
Mit Schritt 5 fortfahren


fischer Injektionssystem FIS V

Verwendungszweck Montageanleitung Teil 1 Anhang B 8

Montageanleitung Teil 2

Kartuschenvorbereitung

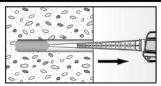


Verschlusskappe abschrauben

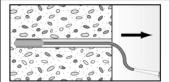
Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

Kartusche in die Auspresspistole legen.

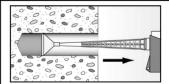
7



Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.


Mit Schritt 8 fortfahren

Mörtelinjektion



8

Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden

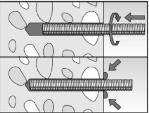
Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

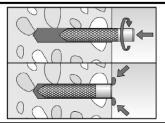
Mit Schritt 9 fortfahren

fischer Injektionssystem FIS V

Verwendungszweck

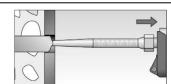
Montageanleitung Teil 2


Anhang B 9



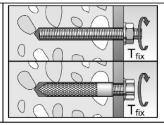
Montageanleitung Teil 3

Montage Ankerstange und fischer Innengewindeanker RG MI

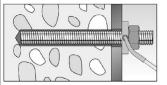


Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefe des Ankers markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Befestigungselementes muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer Zentrierkeile) oder fischer Überkopf-Clips fixieren

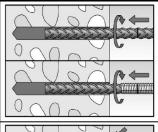

Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

10

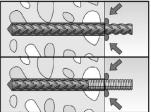

Aushärtezeit abwarten, tcure siehe Tabelle B7.2

11

Montage des Anbauteils, max Tfix siehe Tabellen **B3.1 und B4.1**


Option

Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Anker und Anbauteil (Ringspalt) über die Verfüllscheibe FFD mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel FIS HB, FIS SB, FIS V, FIS EM Plus).


ACHTUNG: Bei Verwendung der Verfüllscheibe FFD reduziert sich tfix (Nutzlänge des Anker)

Montage Betonstahl und fischer Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

10

Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

11

Aushärtezeit abwarten, tcure siehe Tabelle B7.2

12

Montage des Anbauteils, max Tfix siehe Tabelle B6.1

fischer Injektionssystem FIS V

Verwendungszweck Montageanleitung Teil 3 Anhang B 10

Z88240.19

Tabelle C1.1:	Leistungsmerkmale ³⁾ für die Stahltragfähigkeit unter Zug- / Querzug-
	beanspruchung von fischer Ankerstangen und Standard-Gewindestangen

	beanspruchung von inscher Ankerstangen und Standard-Gewindestangen													
Anke	r- / Gewindestange				М6	M8	M10	M12	M16	M20	M24	M27	M30	
Zugtr	agfähigkeit, Stahlve	ersagen												
i. N _{Rk,s}	Ctable varainlet		5.8		10	19(17)	29(27)	43	79	123	177	230	281	
. Ž	Stahl verzinkt		8.8		16	29(27)	47(43)	68	126	196	282	368	449	
Charakt. Widerstand	Nichtrostender Stahl A4 und Hochkorrosions-	Festigkeits- klasse	50	[kN]	10	19	29	43	79	123	177	230	281	
는 Sel		Riasse	70		14	26	41	59	110	172	247	322	393	
Ĭ	beständiger Stahl C		80		16	30	47	68	126	196	282	368	449	
Teilsi	cherheitsbeiwerte 1)				•				·				
ر ا	Ctoblyorainkt		5.8						1,50					
heit/	Stahl verzinkt		8.8						1,50					
Teilsicherheits- beiwert y _{Ms,N}	Nichtrostender Stahl A4 und Hochkorrosions-	Festigkeits- klasse	50	[-]					2,86					
ilsic eiw	Stahl A4 und Hochkorrosions-	Niasse	70					1,	$50^{2)} / 1,$	87				
Te P	beständiger Stahl C		80						1,60	·				
Quer	Quertragfähigkeit, Stahlversagen													
	Hebelarm													
tt. V ^o Rk,s	Stahl verzinkt		5.8		5	9(8)	15(13)	21	39	61	89	115	141	
,			8.8		8	15(13)	23(21)	34	63	98	141	184	225	
Charakt.	Nichtrostender Stahl A4 und Hochkorrosions- beständiger Stahl C	Festigkeits- klasse	50	[kN]	5	9	15	21	39	61	89	115	141	
Ch Gers	Stahl A4 und Hochkorrosions-	Masse	70		7	13	20	30	55	86	124	161	197	
×	beständiger Stahl C		80		8	15	23	34	63	98	141	184	225	
Duktil	itätsfaktor		k ₇	[-]		•			1,0		•			
	ebelarm	•												
Charakt. Widerstand M ⁰ _{Rk,s}	Stahl verzinkt		5.8		7	19(16)	37(33)	65	166	324	560	833	1123	
Ğ.∓			8.8		12	30(26)	60(53)	105	266	519	896	1333	1797	
Charakt. rstand №	Nichtrostender	Festigkeits- klasse	50	[Nm]	7	19	37	65	166	324	560	833	1123	
C. ders	Stahl A4 und Hochkorrosions-		70		10	26	52	92	232	454	784	1167	1573	
Wic	beständiger Stahl C		80		12	30	60	105	266	519	896	1333	1797	
Teilsi	cherheitsbeiwerte 1)				•	•		•	•	•			
ts >	Stahl verzinkt		5.8						1,25					
rhei Yms,			8.8						1,25					
che /ert	Nichtrostender	Festigkeits- klasse	_50	[-]					2,38					
Teilsicherheits -beiwert y _{Ms,} v	Stahl A4 und Hochkorrosions-		70					1,	25 ²⁾ / 1,	56				
======================================	beständiger Stahl C		80						1,33					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

fischer Injektionssystem FIS V	
Leistung Leistungsmerkmale für die Stahltragfähigheit von fischer Ankerstangen und Standard-Gewindestangen	Anhang C 1

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl C, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. fischer Ankerstangen)

Tabelle C2.1:		tungsmerki erzugbeans										
fischer Innengev	windea	nker RG MI			М8	M10	M12	M16	M20			
Zugtragfähigkeit	t, Stahl	versagen				-	_	-				
Charakt.	$N_{Rk,s}$	Festigkeits-	5.8	-	19	29	43	79	123			
Widerstand mit		klasse	8.8	[kN]	29	47	68	108	179			
Schraube		Festigkeits-	_A4	,	26	41	59	110	172			
		Klasse 70	С		26	41	59	110	172			
Teilsicherheitsb	eiwerte	9 1)										
	- γMs,N	Festigkeits-	5.8				1,50					
Teilsicherheits-		klasse	8.8	[-]	1,50							
beiwerte		Festigkeits-	_A4				1,87					
		Klasse 70	С				1,87					
Quertragfähigke	it, Stal	nlversagen										
Ohne Hebelarm												
		Festigkeits-	5.8	- -	9,2	14,5	21,1	39,2	62,0			
Charakt. Widerstand mit	V^0 Rk,s	klasse	8.8		14,6	23,2	33,7	54,0	90,0			
Schraube		Festigkeits-	A4		12,8	20,3	29,5	54,8	86,0			
oon aabo		Klasse 70	С		12,8	20,3	29,5	54,8	86,0			
Duktilitätsfaktor			k ₇	[-]		•	1,0					
Mit Hebelarm												
		Festigkeits-	5.8		20	39	68	173	337			
Charakt. Widerstand mit	M ⁰ Rk,s	klasse	8.8	Nm]	30	60	105	266	519			
Schraube	IVI°Rk,s	Festigkeits-	A4	ונווואו	26	52	92	232	454			
301114430		Klasse 70	С		26	52	92	232	454			
Teilsicherheitsb	eiwerte	e ¹⁾										
		Festigkeits-	5.8				1,25					
Teilsicherheits-		klasse	8.8				1,25					
beiwerte	γMs,V	Festigkeits-	A4	[-]			1,56					
		Klasse 70	С				1,56					

1) Fall	s	keine a	abweic	hender	า nationa	alen F	Reae	lungen	vorliegen
	· · uii		CIIIO (2011010	nonaci	1 Hatione		, ogo	angon	voinegen

fischer Injektionssystem FIS V	
Leistung Leistungsmerkmale für die Stahltragfähigkeiten von fischer Innengewindeankern RG MI	Anhang C 2

Tabelle C3.1: Leistungsm Querzugbea						it unter	Zug- /			
Stabnenndurchmesser	ф	8	10	12	14	16	20	25	28	
Zugtragfähigkeit, Stahlversagei	n									
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	As · fuk1)							
Quertragfähigkeit, Stahlversage	en									
Ohne Hebelarm										
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]				0,5 · A	s · f _{uk} 1)			
Duktilitätsfaktor	k ₇	[-]] 1,0							
Mit Hebelarm										
Charakteristischer Widerstand	M^0 Rk,s	[Nm]		1,2 · W _{el} · f _{uk} 1)						

¹⁾ fuk bzw. fyk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C3.2: Leistungsmerkmale für die **Stahltragfähigkeit** unter Zug- / Querzugbeanspruchung von **fischer Bewehrungsankern FRA**

fischer Bewehrungsanker FRA			M12	M16	M20	M24		
Zugtragfähigkeit, Stahlversage	n	-				-		
Charakteristischer Widerstand	N _{Rk,s}	[kN]	63	111	173	270		
Teilsicherheitsbeiwert 1)				•				
Teilsicherheitsbeiwert	γMs,N	1s,N [-] 1,4						
Quertragfähigkeit, Stahlversag	en							
Ohne Hebelarm								
Charakteristischer Widerstand	V^0 Rk,s	[kN]	30	55	86	124		
Duktilitätsfaktor	k ₇	[-]		1	,0			
Mit Hebelarm		•						
Charakteristischer Widerstand	M ⁰ Rk,s	[Nm]	92	233	454	785		
Teilsicherheitsbeiwert 1)		•		•	•	•		
Teilsicherheitsbeiwert	γMs,V	[-]		1,	56			

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS V

Leistung
Leistungsmerkmale für die Stahltragfähigkeiten von Betonstahl und fischer Bewehrungsanker FRA

Anhang C 3

Zugbelastung Ungerissener Beton	röße						Al	le Grö	ßen					
		k _{ucr,N}						11,0						
Gerissener Beton		k _{cr,N}	[-]					7,7						
Faktoren für Beton	druckfestigkei	ten > 0	20/25											
	C25/30							1,05						
	C30/37							1,10						
Erhöhungs-	C35/45							1,15						
faktor für τ_{Rk}	C40/50	Ψ_{c}	[-]					1,19						
	C45/55							1,22						
	C50/60							1,26						
Versagen durch Sp	alten							-						
	h / h _{ef} ≥ 2,0							1,0 h	ef					
Randabstand 2,0	$\frac{1}{1} > h / h_{ef} > 1,3$	C _{cr,sp}		4,6 h _{ef} - 1,8 h										
	h / h _{ef} ≤ 1,3		[mm]	2,26 h _{ef}										
Achsabstand s				2 C _{cr.sp}										
Versagen durch ke	gelförmigen Be	etonau	sbruc	h										
Randabstand	-	Ccr,N						1,5 h	ef					
Achsabstand s _c			[mm]	2 C _{cr,N}										
Faktor für Dauerzugl	pelastung													
Temperaturbereich			[-]		50 °C	C / 80 °C				72 °C /	120 °C			
Faktor Ψ ⁰ _{sus}			[-]			0,74				0,0	37			
Querzugbelastung						•				·				
Montagebeiwert		γinst	[-]					1,0						
Betonausbruch auf	der lastabgew)										
Faktor für Betonausk		k ₈	[-]					2,0						
Betonkantenausbru		- 1.0	LJ					_,-						
Der Wert von hef (=lf)	1			Bedin	gungen	gemäß	1992-	4:2018	3; Kapit	el 7.2.2	.5; Abscl	nnitt 6		
unter Querlast ()			[-]	,	Bedingungen gemäß 1992-4:2018; Kapitel 7.2.2.5; Abschr Gleichung 7.43									
Rechnerische Durc	hmesser													
Größe				M6	M8	M10	M12	M16	M20	M24	M27	МЗ		
fischer Ankerstange Standard-Gewindest		d _{nom}	[]	6	8	10	12	16	20	24	27	30		
fischer Innengewinde	eanker RG MI	d_{nom}	[mm]	-	12	16	18	22	28	-	-	-		
fischer Bewehrungsa	anker FRA	d_{nom}		-	-	-	12	16	20	25	-	-		
	er		ф	8	10	12	1-	4	16	20	25	28		
Stabnenndurchmess		d_{nom}	[mm]	8	10	12	1.	4	16	20	25	28		

Tabelle C5.1:	Leistungsmerkmale für die Zugtragfähigkeit von fischer Ankerstangen und
	Standard-Gewindestangen im hammergebohrten; ungerissener oder
	gerissener Beton

gerissen	er bet	OH									
Anker- / Gewindestange			М6	М8	M10	M12	M16	M20	M24	M27	M30
Kombiniertes Versagen durc	h Herau	ısziehen ı	und Be	tonaus	bruch	-			•		
Rechnerischer Durchmesser	d	[mm]	6	8	10	12	16	20	24	27	30
Ungerissener Beton					-	-	-		-		
Charakteristische Verbundtr	agfähig	keit im un	geriss	enen B	eton C	20/25					
Hammerbohren mit Standard-	<u>oder Hol</u>	<u>nlbohrer (t</u>	rocken	er oder	nasser	Beton)					
Tempe- I: 50 °C / 80 °C ratur-	· TRk,ucr	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
bereich II: 72 °C / 120 °C	VI III, GOI	[]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammerbohren mit Standard-	oder Ho	hlbohrer (v	wasser	gefülltes	s Bohrlo	och) 1)					
Tempe- I: 50 °C / 80 °C		[N/mm²]	-	-	-	9,5	8,5	8,0	7,5	7,0	7,0
bereich II: 72 °C / 120 °C	τRk,ucr	[[14/111111-]	-	-	-	7,5	7,0	6,5	6,0	6,0	6,0
Montagebeiwerte											
Trockener oder nasser Beton		[-]					1,0				
Wassergefülltes Bohrloch	γinst	[-]	-			1,2 1)					
Gerissener Beton											
Charakteristische Verbundtr	agfähig	keit im ge	rissen	en Beto	on C20/	25					
Hammerbohren mit Standard-	<u>oder Ho</u>	<u>hlbohrer (1</u>	trocken	<u>er oder</u>	nasser	Beton)					
Tempe- I: 50 °C / 80 °C	. .	[N/mm ²]	-	5,5	6,0	6,0	6,0	5,5	4,5	4,0	4,0
bereich II: 72 °C / 120 °C	TRk,cr		-	4,5	5,0	6,0	6,0	5,0	4,0	3,5	3,5
Hammerbohren mit Standard-	<u>oder Ho</u>	<u>hlbohrer (v</u>	wasser	gefülltes	s Bohrlo	och) 1)					
Tempe- I: 50 °C / 80 °C		[N/mm ²]	-	-	-	5,0	5,0	4,5	4,0	3,5	3,5
bereich II: 72 °C / 120 °C	τRk,cr	[[14/111111-]	-	-	-	4,0	4,0	4,0	3,5	3,0	3,0
Montagebeiwerte											
Trockener oder nasser Beton	200	[]					1,0				
Wassergefülltes Bohrloch	γinst	[-]		-				1,2	2 1)		

¹⁾ Nur Coaxialkartuschen: 380 ml, 400 ml, 410 ml

fischer Injektionssystem FIS V

Leistung
Leistungsmerkmale für die Zugtragfähigkeit von fischer Ankerstangen und StandardGewindestangen

Anhang C 5

Tabelle C6.1:	Leistungsmerkmale für die Zugtragfähigkeit von fischer Innengewinde-
	ankern RG MI im hammergebohrten Bohrloch; ungerissener Beton

		М8	M10	M12	M16	M20					
h Herau	ısziehen i	und Betonau	sbruch								
d	[mm]	12	16	18	22	28					
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25											
oder Hol	nlbohrer (t	rockener ode	r nasser Beto	<u>n)</u>							
TDI.	[N]/mm ²]	10,5	10,0	9,5	9,0	8,5					
t HK,ucr	[[14/11111]	9,0	8,0	8,0	7,5	7,0					
oder Hol	hlbohrer (v	wassergefüllt	es Bohrloch 1))							
	[N]/mm21	10,0	9,0	9,0	8,5	8,0					
t RK,ucr	[[14/11111]	7,5	6,5	6,5	6,0	6,0					
26	F 1			1,0							
γinst	[-]			1,2 ¹⁾							
	d agfähig l oder Hol	d [mm] agfähigkeit im un oder Hohlbohrer (t trik,ucr [N/mm²] oder Hohlbohrer (v trik,ucr [N/mm²]	ch Herausziehen und Betonau d [mm] 12 agfähigkeit im ungerissenen oder Hohlbohrer (trockener ode TRk,ucr [N/mm²] 10,5 9,0 oder Hohlbohrer (wassergefüllter TRk,ucr [N/mm²] 10,0 7,5	th Herausziehen und Betonausbruch d [mm] 12 16 agfähigkeit im ungerissenen Beton C20/29 oder Hohlbohrer (trockener oder nasser Beton C20/29 TRIK,ucr [N/mm²] 10,5 10,0 9,0 8,0 oder Hohlbohrer (wassergefülltes Bohrloch 10,0 TRIK,ucr [N/mm²] 10,0 9,0 TRIK,ucr [N/mm²] 7,5 6,5	## Herausziehen und Betonausbruch d	## Herausziehen und Betonausbruch d					

¹⁾ Nur für Coaxialkartuschen: 380 ml, 400 ml, 410 ml

fischer Injektionssystem FIS V

Leistung
Leistungsmerkmale für die Zugtragfähigkeit von fischer Innengewindeankern RG MI

Anhang C 6

Stabnenndurchmess	ser		ф	8	10	12	14	16	20	25	28
Kombiniertes Versa	gen durc	h Herau	isziehen ເ	ınd Bet	onausbr	uch					
Rechnerischer Durchr	messer	d	[mm]	8	10	12	14	16	20	25	28
Ungerissener Beton											
Charakteristische Ve											
Hammerbohren mit Sta		er Hohlb	ohrer (trod			1				l	
Tempe- I: 50 °C / ratur-		τ _{Rk,ucr}	[N/mm²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
pereich II: 72 °C /	/ 120 °C			9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Montagebeiwerte			I I								
Frockener oder nasse	er Beton	γinst	[-]				1	,0			
Gerissener Beton Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25											
							+a.m.\				
Hammerbohren mit S Tempe- I· 50 °C /		ouer HO	nibonrer (t					F 0	4.5	4.0	4.0
ratur-		τRk,cr	[N/mm²]	-	3,0	5,0	5,0	5,0	4,5	4,0	4,0
pereich II: 72 °C /	/ 120 °C			-	3,0	4,5	4,5	4,5	4,0	3,5	3,5
Montagebeiwerte											
Γrockener oder nasse	er Beton	γinst	[-]				1	,0			

Tabelle C8.1:	Leistungsmerkmale für die Zugtragfähigkeit von fischer Bewehrungs-
	ankern FRA im hammergebohrten Bohrloch; ungerissener oder
	gerissener Beton

gerisse	ener Bet	on				
fischer Bewehrungsanker	FRA		M12	M16	M20	M24
Kombiniertes Versagen du	ırch Herau	ısziehen ı	und Betonausbi	ruch		
Rechnerischer Durchmesser	, d	[mm]	12	16	20	25
Ungerissener Beton						
Charakteristische Verbund	ltragfähig	keit im un	igerissenen Bet	on C20/25		
Hammerbohren mit Standard	d- oder Hol	<u>nlbohrer (t</u>	rockener oder na	asser Beton)		
Tempe- I: 50 °C / 80 °C ratur-		[N1/mm2]	11,0	10,0	9,5	9,5
bereich II: 72 °C / 120 °C	TRk,ucr	[N/mm ²]	9,0	8,5	8,0	7,5
Montagebeiwerte						
Trockener oder nasser Betor	n γ _{inst}	[-]		1,	0	
Gerissener Beton						
Charakteristische Verbund	ltragfähig	keit im ge	rissenen Beton	C20/25		
Hammerbohren mit Standard	d- oder Ho	hlbohrer (1	trockener oder n	asser Beton)		
Tempe- I: 50 °C / 80 °C		[N]/m=m=2]	5,0	5,0	4,5	4,0
ratur- H: 72 °C / 120 °C	TRk,ucr	[N/mm ²]	4,5	4,5	4,0	3,5
Montagebeiwerte						
Trockener oder nasser Betor	n γ _{inst}	[-]		1,	0	

fischer Injektionssystem FIS V

Leistung

Leistungsmerkmale für die Zugtragfähigkeit von fischer Bewehrungsankern FRA

Anhang C 8

Ankerst	ange	М6	М8	M10	M12	M16	M20	M24	M27	M30	
Verschiebungs-Faktoren für Zuglast¹)											
Ungerissener Beton; Temperaturbereich I, II											
δ N0-Faktor	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
δ _{N∞-Faktor}][[[]]][]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Gerissener Beton; Temperaturbereich I, II											
SN0-Faktor	[mm//N1/mm2\1	-	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15	
ŠN∞-Faktor	[mm/(N/mm²)]	-	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40	
Verschie	ebungs-Faktor	en für Qu	erlast ²⁾								
Ungeris	sener oder ger	issener B	eton; Ten	nperaturb	ereich I, II						
δ V0-Faktor	[mm // c N l]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
δv∞-Faktor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) ²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C9.2: Verschiebungen für fischer Innengewindeanker RG MI

Innenge RG MI	windeanker	M8	M10	M12	M16	M20		
Verschiebungs-Faktoren für Zuglast ¹⁾								
Ungerissener oder gerissener Beton; Temperaturbereich I, II								
δ _{N0-Faktor}	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14		
δn∞-Faktor][mm/(w/mm²)]	0,13	0,14	0,14 0,15		0,18		
Verschie	bungs-Faktor	en für Querlast ²⁾						
Ungerise	sener oder ger	issener Beton; To	emperaturbereich	ı I, II				
δ V0-Faktor	[mm/kN]	0,12	0,12	0,12	0,12	0,12		
δν∞-Faktor [mm/kN]		0,14	0,14	0,14	0,14	0,14		

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}} .$ Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta v_0 = \delta v_{0\text{-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS V

Leistung

Verschiebungen Ankerstangen und fischer Innengewindeanker RG MI

Anhang C 9

Stabnen Iurchme	A I	8	10	12	14	16	20	25	28
/erschie	ebungs-Faktor	en für Zugl	ast¹)						
Jngeris :	sener Beton; T	emperatur	bereich I, II						
N0-Faktor	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
N∞-Faktor	[[[[]]]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Gerisser	ner Beton; Tem	peraturbe	reich I, II						
N0-Factor	 -[mm/(N/mm²)]	-	0,12	0,13	0,13	0,13	0,13	0,13	0,14
N∞-Factor	[[111117/(14/111111 /]	-	0,27	0,30	0,30	0,30	0,30	0,35	0,37
/erschie	ebungs-Faktore	en für Que	rlast ²⁾						
Jngeris :	sener oder ger	issener Be	ton; Temp	eraturbere	ich I, II				
δv0-Faktor	 	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
ŠV∞-Faktor		0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09
1) Bered	chnung der effel	ktiven Vers	chiebung:		²⁾ Berechnu	ıng der effe	ktiven Vers	chiebung:	
δνο =	δN0-Faktor · τEd				$\delta v_0 = \delta v_0$	Faktor · VEd			
δ _{N∞} =	- δN∞-Faktor · τEd				$\delta_{V\infty}=\delta_{V\infty}$	-Faktor · VEd			
	Bemessungswe irkenden Zugspa					messungsw nden Querk			

fischer B anker FR	Bewehrungs- RA	M12	M16	M20	M24				
Verschie	bungs-Faktor	en für Zuglast¹)							
Jngeriss	sener Beton; T	emperaturbereich I, II							
SN0-Faktor	[mm/(N/mm²)]	0,10	0,10	0,10	0,10				
ŠN∞-Faktor	[11111/(14/111111-)]	0,12	0,12	0,12	0,13				
Gerissener Beton; Temperaturbereich I, II									
SN0-Faktor	[mm/(N/mm²)]	0,13	0,13						
ŠN∞-Faktor	[111111/(14/111111 /]	0,35							
Verschie	bungs-Faktor	en für Querlast ²⁾							
Ungerissener oder gerissener Beton; Temperaturbereich I, II									
δ V0-Faktor	[mm/kN]	0,10	0,10	0,09	0,09				
SV∞-Faktor	[IIIII/KIN]	0,11	0,11	0,10	0,10				
1) Berec	hnung der effe	ktiven Verschiebung:	²⁾ Berec	hnung der effektiven	Verschiebung:				
$\delta_{\text{N0}} =$	δ N0-Faktor \cdot TEd		δνο =	$\delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$					
$\delta_{N\infty} =$	$\delta_{\text{N}\infty\text{-Faktor}}$. τ_{Ed}		$\delta_{V\infty} =$	$\delta_{V\infty\text{-Faktor}}\cdot V_{\text{Ed}}$					
(τ _{Ed} : E einwii	Bemessungswert der rkenden Querkraft)								
fischer									
Leistun Verschie	Anhang C 10								

Tabelle C11.1: Leistungsmerkmale²⁾ für die Stahltragfähigkeit unter Zug- und Querzugbelastung von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

				- 3 -					I	
Anker- / Gewindestange				M10	M12	M16	M20	M24	M27	M30
Zugtragfähigkeit, Stahlve										
fischer Ankerstangen und	d Standard-	Gew	inde	stangen,	Leistung	skategor	ie C1			
ું દું Stahl verzinkt		5.8		29(27)	43	79	123	177	230	281
ອີ້ວິ Stahl verzinkt		8.8		47(43)	68	126	196	282	368	449
Nichtrostender	Festigkeits- klasse	50	[kN]	29	43	79	123	177	230	281
The stand of the s		70		41	59	110	172	247	322	393
beständiger Stahl C		80		47	68	126	196	282	368	449
fischer Ankerstangen und	d Standard-	Gew	inde	stangen,	Leistung	skategor	ie C2			
2 C		5.8		-	39	72	108	-	-	-
်မှု Stahl verzinkt		8.8		-	61	116	173	-	-	-
Nichtrostender	Festigkeits- klasse	50	[kN]	-	39	72	108	-	-	-
Character Stahl verzinkt Stahl verzinkt Nichtrostender Stahl A4 und Hochkorrosions- beständiger Stahl C	Masse	70		-	53	101	152	-	-	-
등 등 hochkorrosions beständiger Stahl C	80		-	61	116	173	-	-	-	
Quertragfähigkeit, Stahlv	ersagen oh	ne H	lebela	arm ¹⁾						
fischer Ankerstangen, Le										
្នុំ Stahl verzinkt		5.8		15(13)	21	39	61	89	115	141
		8.8		23(21)	34	63	98	141	184	225
harakt: Michtrostender V O Stahl A4 und Nichtrostender Wichtrostons-	Festigkeits- klasse	50 [kN]	[kN]	15	21	39	61	89	115	141
The proof of the p	Masse	70		20	30	55	86	124	161	197
는 항 beständiger Stahl C		80		23	34	63	98	141	184	225
Standard-Gewindestange	en, Leistung	jska	tegor	ie C1		-				
្នុំ Stahl verzinkt		5.8		11(9)	15	27	43	62	81	99
l ` δ΄		8.8		16(14)	24	44	69	99	129	158
Nichtrostender	Festigkeits- klasse	50	[kN]	11	15	27	43	62	81	99
Type Stahl A4 und Hochkorrosions- O	Masse	70		14	21	39	60	87	113	138
등 함 beständiger Stahl C		80		16	24	44	69	99	129	158
fischer Ankerstangen un	d Standard-	Gew	inde	stangen,	Leistung	skategor	ie C2			
₹ 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5.8		-	14	27	43	-	-	-
ည် ကို Stahl verzinkt		8.8		-	22	44	69	-	-	-
≶ ຊື້ ————— ປ່ ຊື່ Nichtrostender	Festigkeits-	50	[kN]	-	14	27	43	-	-	-
ੈਂ Stahl A4 und	klasse	70	_	-	20	39	60	-	-	-
Hochkorrosions- beständiger Stahl C		80		-	22	44	69	-	_	_
Destandiger Staff O		00		_		77	UJ	_	_	_

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C12.1; für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

fischer Injektionssystem FIS V

Leistung

Leistungsmerkmale für die Stahltragfähigkeiten von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

Anhang C 11

²⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C12.1: Teilsicherheitsbeiwerte von fischer Ankerstangen, Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

Anke	r- / Gewindestange				M10	M12	M16	M20	M24	M27	M30
Zugtr	agfähigkeit, Stahlve	rsagen1)									
۵_ ا	Stahl verzinkt 5.8			1,50							
eilsicherheits beiwert mss.n			8.8					1,50			
cher	Nichtrostender	Festigkeits- klasse	50	[-]	[-] 2,86						
eilsiche beiwert	Stahl A4 und Hochkorrosions-		70		1,502) / 1,87						
<u> </u>	beständiger Stahl C		80					1,60			
Quer	ragfähigkeit, Stahlv	ersagen ¹⁾									
٠	Stabl vorzinkt		5.8					1,25			
heit Yms,v	Stahl verzinkt		8.8		1,25						
sicher	을 등 Nichtrostender Festigkeits 50 [-]					2,38					
eilsid beiw	Stahl A4 und Hochkorrosions-				1,25 ²⁾ / 1,56						
Ĕ _	beständiger Stahl C										

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS V

Leistung

Teilsicherheitsbeiwerte von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

Anhang C 12

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl C, mit f_{yk} / f_{uk} ≥ 0,8 und A₅ > 12 % (z.B. fischer Ankerstangen)

Tabelle C13.1: Leistungsmerkmale für die **Tragfähigkeit** von **fischer Ankerstangen** und **Standard-Gewindestangen** für die seismische Leistungskategorie **C1** im hammergebohrten Bohrloch

Anker- /	Gew	indestange			M10	M12	M16	M20	M24	M27	M30
Charakte	risti	sche Verbundt	ragfähigl	ceit, koml	biniertes	Versage	n durch F	lerauszie	hen und	Betonaus	sbruch
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)											
Tempe- ratur-	l:	35 °C / 60 °C		[N/mm²]	4,5	5,5	5,5	5,5	4,5	4,0	4,0
bereich	II:	50 °C / 72 °C	TRk,eq,C1	[[N/]]]]	4,0	4,5	4,5	4,5	4,0	3,5	3,5
Hammer	bohr	en mit Standar	d- oder H	lohlbohre	er (wasse	ergefüllte	s Bohrlo	ch) ¹⁾			
Tempe-		35 °C / 60 °C		[N/mm²]	-	5,0	5,0	4,5	4,0	3,5	3,5
ratur- bereich	II:	50 °C / 72 °C	TRk,eq,C1	[[14/111111-]	=	4,0	4,0	4,0	3,5	3,0	3,0

¹⁾ Nur für Coaxialkartuschen: 380 ml, 400 ml, 410 ml

fischer Injektionssystem FIS V

Leistung
Leistungsmerkmale unter seismischer Einwirkung (Leistungskategorie C1) für fischer
Ankerstangen, Standard-Gewindestangen

Tabelle C14.1: Leistungsmerkmale für die **Tragfähigkeit** von **fischer Ankerstangen** und **Standard-Gewindestangen** für die seismische Leistungskategorie **C2** im hammergebohrten Bohrloch

Anker- / 0	Gew	indestange			M12	M16	M20			
Charakte	risti	sche Verbundtrag	gfähigke	eit, koml	biniertes Versagen d	urch Herausziehen u	nd Betonausbruch			
Hammerl	oohi	ren mit Standard-	oder Ho	ohlbohre	er (trockener oder na	sser Beton)				
Tempe-	l:	50 °C / 80 °C		NI/mm21	1,5	1,3	2,1			
ratur bereich	II:	72 °C / 120 °C	Rk,eq,C2 [[N/mm ²]	1,3	1,2	1,9			
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch ³⁾)										
Tempe-	l:	50 °C / 80 °C		`NI/mm21	1,3	1,1	1,8			
ratur bereich	II:	72 °C / 120 °C	Rk,eq,C2 [[N/mm²]	1,1	1,0	1,6			
Verschie	bun	gen unter Zuglast	1)							
δN,(DLS)-Fak	tor		[mm/(N	\I/mm2\1	0,20	0,13	0,21			
$\delta_{\text{N,(ULS)-Fakt}}$	tor			\/mm²)]	0,38	0,18	0,24			
Verschie	bun	gen unter Querlas	st ²⁾							
δ V,(DLS)-Fakt	δy (DLS)-Faktor			o/kNI	0,18	0,10	0,07			
δV,(ULS)-Faktor] [[[[n/kN]	0,25	0,14	0,11				

1) Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{N,(DLS)}} &= \delta_{\text{N,(DLS)-Faktor}} : \tau_{\text{Ed}} \\ \delta_{\text{N,(ULS)}} &= \delta_{\text{N,(ULS)-Faktor}} : \tau_{\text{Ed}} \end{split}$$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) 2) Berechnung der effektiven Verschiebung:

 $\delta_{\text{V,(DLS)}} = \delta_{\text{V,(DLS)-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V,(\text{ULS})} = \delta_{V,(\text{ULS})\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS V	
Leistung Leistungsmerkmale unter seismischer Einwirkung (Leistungskategorie C2) für fischer Ankerstangen und Standard-Gewindestangen	Anhang C 14

³⁾ Nur für Coaxialkartuschen: 380 ml, 400 ml, 410 ml