

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-11/0240 vom 7. Mai 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

MKT Nagelanker N

Lastkontrolliert spreizender Dübel für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen in Beton

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

10 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 6: "Dübel für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen", August 2010, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-11/0240

Seite 2 von 10 | 7. Mai 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-11/0240

Seite 3 von 10 | 7. Mai 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Der MKT Nagelanker N ist ein Dübel aus galvanisch verzinktem Stahl, nichtrostendem Stahl (Markierung "A4") oder hochkorrosionsbeständigem Stahl 1.4529/1.4565 (Markierung "HCR") der in ein Bohrloch gesetzt und durch Aufbringen der Belastung verspreizt wird. Der Ankerkopf ist mit einem Anschlussgewinde M6 oder M8, mit einem Nagelkopf, einer Anschlussmuffe oder mit einer Öse versehen.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte	Siehe Anhang C 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Siehe Anhang C 2

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

Europäische Technische Bewertung ETA-11/0240

Seite 4 von 10 | 7. Mai 2015

3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 17. Februar 1997 (97/161/EG) (ABI. L 062 vom 04.03.97, S. 41-42) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metallanker zur Verwendung in Beton zur Befestigung von leichten Systemen	zur Verwendung in redundanten Systemen zur Befestigung und/oder Verankerung von Bauteilen z.B. leichten abgehängten Decken, sowie von Installationen am bzw. im Beton	-	2+

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 7. Mai 2015 vom Deutschen Institut für Bautechnik

Andreas Kummerow Beglaubigt: i.V. Abteilungsleiter

Ausführung	gsarten:	Prägung (Beispiele)	Erläuterung
N 6 Gewinde M6	Längen- kennung z.B.: (B)		Werkzeichen
N 8 Gewinde M8	siehe		N Handelsname 6 Gewindegröße M6
N-K Nagelkopf		5 O 10 N 5 O A4	 8 Gewindegröße M8 5 maximale Anbauteildicke bei h_{ef} = 30 mm 10 maximale Anbauteildicke bei h_{ef} = 25 mm (Anwendung nur im
N-M Muffe M8/M10, M8/M12			A4 zusätzliche Kennung für nichtrostenden Stahl A4 HCR zusätzliche Kennung für
N-O Öse		<> NO	hochkorrosions- beständigen Stahl HCR O Ausführung: Öse

000000	Präg	gung	Anbauteildicke bei h _{ef} =		
Längen- kennung	Stahl verzinkt, A4, HCR	nur bei Stahl verzinkt	30 mm	25 mm ¹⁾	
Α	0	/ 5	0	5	
В	5	/ 10	5	10	
С	10	/ 15	10	15	
D	15	/ 20	15	20	
E	20	/ 25	20	25	
F	25	/ 30	25	30	
G	30	/ 35	30	35	
Н	35	/ 40	35	40	
1	40	/ 45	40	45	
J	45	/ 50	45	50	
K	50	/ 55	50	55	
L	55	/ 60	55	60	
M	60	/ 65	60	65	

52-52	Prä	gur	ng	Anbauteildicke bei h _{ef} =		
Längen- kennung	Stahl verzinkt, A4, HCR		nur bei Stahl ⁄erzinkt	30 mm	25 mm ¹⁾	
N	65	/	70	65	70	
0	70	/	75	70	75	
Р	75	/	80	75	80	
Q	80	/	85	80	85	
R	85	/	90	85	90	
S	90	/	95	9	95	
Т	95	/	100	95	100	
U	100	/	105	100	105	
V	105	/	110	105	110	
W	110	/	115	110	115	
Х	115	/	120	115	120	
Υ	120	/	125	120	125	
Z	125	/	130	125	130	

Nagelanker N

Produktbeschreibung

Produktausführungen und Prägung

Anhang A1

¹⁾ Anwendung nur im Innenbereich

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

· statische und quasi-statische Beanspruchung,

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000,
- Festigkeitsklasse C12/15 bis C50/60 nach EN 206-1:2000,
- gerissener und ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):	Effektive Verankerungstiefe
Bauteile unter Bedingungen trockener Innenräume (galvanisch verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).	h _{ef} ≥ 30mm und h _{ef,red} ≥ 25mm
Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).	h _{ef} ≥ 30mm und h _{ef,red} ≥ 25mm
Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).	h _{ef} ≥ 30mm
Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)	h _{ef} ≥ 30mm

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden.)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern, usw.).
- Das zu befestigende Bauteil ist so zu bemessen, dass auch im Fall eines übermäßigen Schlupfs oder Versagens eines Dübels die Last auf benachbarte Dübel übertragen werden kann.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung erfolgt nach:
 - ETAG 001, Anhang C, Ausgabe August 2010, Bemessungsverfahren C oder
 - CEN/TS 1992-4:2009, Bemessungsverfahren C
- Der Dübel darf nur für die Mehrfachbefestigung von nichttragenden Systemen verwendet werden, gemäß ETAG 001 Teil 6, Ausgabe August 2010.
- Bemessung von Verankerungen unter Brandbeanspruchung erfolgt nach:
 - EOTA Technical Report TR 020, Ausgabe Mai 2004 oder
 - CEN/TS 1992-4:2009, Anhang D
 - Es muss sichergestellt werden, dass unter Brandbeanspruchung keine lokalen Abplatzungen der Betonoberfläche auftreten.

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- · Bohrlocherstellung nur durch Hammerbohren,
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn die zulässige Anbauteildicke eingehalten ist oder die Öse des Nagelankers N-O auf der Betonoberfläche anliegt.

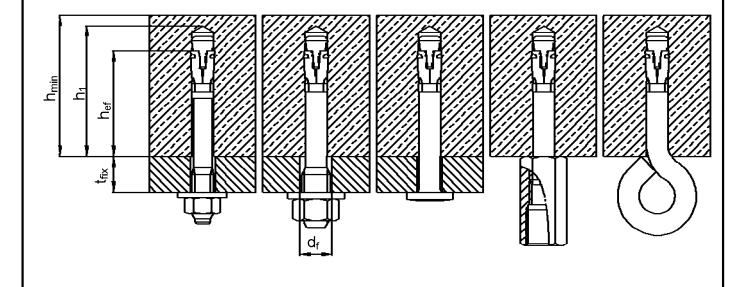
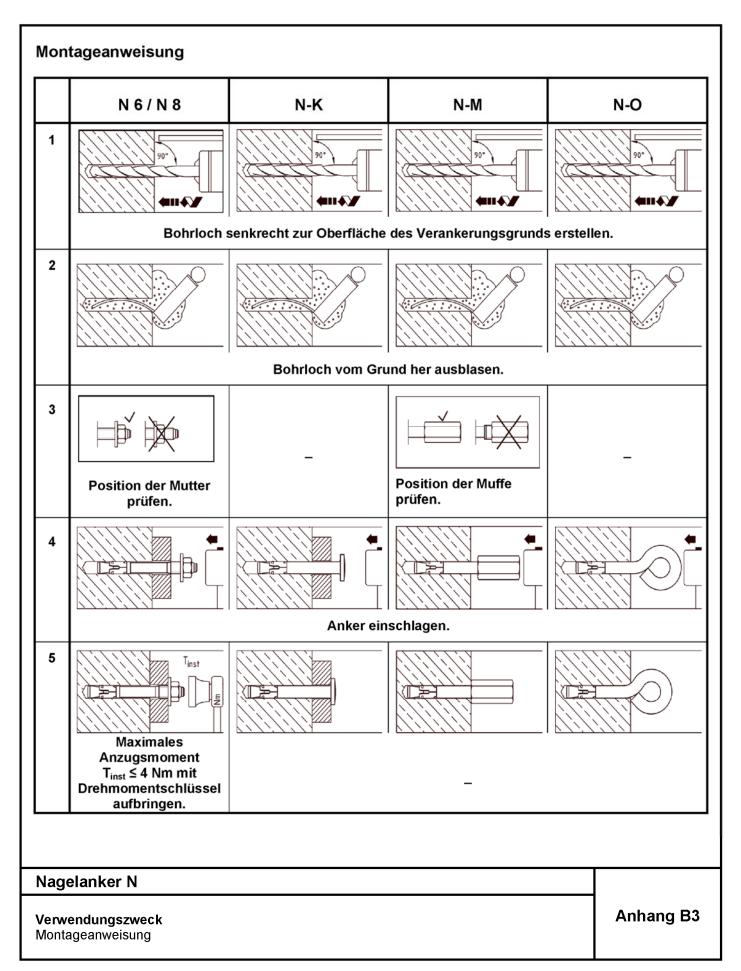

Nagelanker N	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Montage- und Dübelkennwerte


Dübeltyp	N 6 N-K N-O	N 8 N-M	N 6 N-K N-O	N 8 N-M			
Effektive Verankerungstiefe	fe h _{ef} ≥ [mm]			i 1)	30		
Bohrernenndurchmesser	d_0	[mm]	6	6	6	6	
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6,40	6,40	6,40	6,40	
Bohrlochtiefe	h₁≥	[mm]	35	35	40	40	
Durchgangsloch im Anbauteil	d _f ≤	[mm]	7	9	7	9	
Maximales Drehmoment beim Verankern (nur N 6 und N 8)	T _{inst} ≤	[Nm]	4	4	4	4	
Mindestbauteildicke	h _{min}	[mm]	80	80	80	80	

¹⁾ Anwendung nur im Innenbereich

Nagelanker N	
Verwendungszweck Montage und Dübelkennwerte	Anhang B2

Tabelle C1: Charakteristischer Widerstand und Bemessungswiderstand **für einen Befestigungspunkt** 1), Bemessungsmethode C

D oroongan gopan k	, 5011100001	1901110						
Dübeltyp			N 6	N 8 N-K N-M	N-O	N 6	N 8 N-K N-M	N-O
Effektive Verankerungstiefe	h _{ef} ≥	[mm]		25			30	
Teilsicherheitsbeiwert für alle Lastrichtungen	γм	-			1	,5		
Optimiert für maximale Last								
Charakteristischer Widerstand C12/15	— F _{Rk}	[kN]	3,0	3,0 4)	1,5	4,0	4,0 4)	1,5
Charakteristischer Widerstand C20/25 bis C50/60	' KK	[KIV]	4,5	4,5 4)	1,5	5,9	5,9 ⁴⁾	1,0
Bemessungswiderstand C12/15	F _{Rd}	[kN]	2,0	2,0 4)	1,0	2,7	2,7 4)	1,0
Bemessungswiderstand C20/25 bis C50/60	¹ Rd	נאואן	3,0	3,0 ⁴⁾	1,0	3,9	3,9 ⁴⁾	1,0
Zugehöriger Achsabstand zwischen	Scr	[mm]		100				
Befestigungspunkten 1) 2)	für c _{cr} ≥	[]	200					
Zugehöriger Randabstand ²⁾	Ccr	[mm]						
Zagenonger (tandabetana	für s _{cr} ≥	[]			20	00		
Optimiert für minimalen Randabstand								
Charakteristischer Widerstand C12/15	— F _{Rk}	[kN]	1,5	1,5 ⁴⁾	1,5	2,0	2,0 4)	1,5
Charakteristischer Widerstand C20/25 bis C50/60	' RK	[KI V]	2,0	2,0 4)	1,5	2,5	2,5 4)	
Bemessungswiderstand C12/15	— F _{Rd}	[kN]	1,0	1,0 4)	1,0	1,3	1,3 ⁴⁾	1,0
Bemessungswiderstand C20/25 bis C50/60	¹ Rd	נאואן	1,3	1,3 ⁴⁾	1,0	1,7	1,7 4)	
Zugehöriger Achsabstand zwischen	Ccr	[mm]				0		
Befestigungspunkten 1)	für s _{cr} ≥	[]			10	00		
Querlast mit Hebelarm								
Charakteristisches Biegemoment, Stahl, verzinkt	— M ⁰ _{Rk,s}	[Nm] -	9,2	12,7	3)	9,2	12,7	3)
Charakteristisches Biegemoment, Edelstahl A4/HCR	IVI Rk,s	[INIII]	9,2	13,5	3)	9,2	13,5	3)
Teilsicherheitsbeiwert	γMs	-			1,	25		
			_					

- Ein Befestigungspunkt ist definiert als:
 - Einzeldübel,
 - Dübelpaar mit Mindestachsabstand s von 50 mm ≤ s < s_{cr} oder
 - Vierergruppe mit Mindestachsabstand s von 50 mm ≤ s < s_{cr}

lst der Achsabstand der Dübel in einem Befestigungspunkt größer oder gleich dem zugehörigen Achsabstand in dieser Tabelle, gelten die charakteristischen Widerstände für jeden einzelnen Dübel.

- Zwischenwerte dürfen linear interpoliert werden.
- Nachweis gegen Versagen bei Querlast mit Hebelarm nicht erforderlich.
- Bei der Ausführung N-M ist bei vorhandener Querkraft ein Nachweis für Querlast mit Hebelarm zu führen.

Nagelanker N Leistung Charakteristischer Widerstand und Bemessungswiderstand Anhang C1

Tabelle C2: Charakteristischer Widerstand für einen Befestigungspunkt¹⁾ unter **Brandbeanspruchung** in Beton C20/25 bis C50/60, Bemessungsmethode C

	h _{ef} ≥	[mm]				N-O	N 8	N-K	N-M ³⁾	N-O			
gen	ffektive Verankerungstiefe h _{ef} ≥							3	0				
			0,6	0,6	0,6	0,2	0,9	0,9	0,8	-			
Charakteristischer	_	ri-NII	0,6	0,6	0,6	0,2	0,7	0,8	0,7	-			
Viderstand, Stahl verzinkt	$F_{Rk,fi}$	[kN]	0,5	0,6	0,6	0,1	0,5	0,6	0,6	-			
			0,4	0,5	0,5	0,1	0,4	0,5	0,6	-			
Charakteristischer Widerstand, nichtrostender Stahl A4 / HCR			0,6	0,6	0,6	0,2	0,9	0,9	0,8	0,2			
	_	rizan	0,6	0,6	0,6	0,2	0,9	0,9	0,7	0,2			
	iiciitiostelluel	□Rk,fi	∟Rk,fi	□Rk,fi	[KIN]	0,5	0,6	0,6	0,1	0,9	0,9	0,6	0,1
	HCK		0,4	0,5	0,5	0,1	0,7	0,7	0,6	0,1			
Randabstand	C _{cr,fi}	[mm]				5	0						
chsabstand	S _{cr,fi}	[mm]				10	00						
elarm													
			0,7	1,0	0,7	2)	0,7	1,0	0,7	-			
harakteristischer	n a ⁰	[Nima]	0,5	0,8	0,7	2)	0,5	0,8	0,7	-			
stahl verzinkt	IVI Rk,fi	ן נוזווון	0,4	0,5	0,6	2)	0,4	0,5	0,6	-			
			0,3	0,4	0,5	2)	0,3	0,4	0,5	-			
haraktaristisahar			1,4	2,1	0,7	2)	1,4	2,1	0,7	2)			
viderstand,		1,1	1,5	0,7	2)	1,1	1,5	0,7	2)				
nichtrostender Stahl A4 / HCR	IVI* _{Rk,fi}	[mm]	0,7	1,0	0,6	2)	0,7	1,0	0,6	2)			
			0,5	0,7	0,5	2)	0,5	0,7	0,5	2)			
	charakteristischer Widerstand, ichtrostender tahl A4 / HCR Randabstand chsabstand chsabstand charakteristischer Widerstand, tahl verzinkt charakteristischer Widerstand, ichtrostender tahl A4 / HCR	charakteristischer tahl A4 / HCR charakteristischer tahl A4 / HCR chandabstand C _{cr,fi} chsabstand S _{cr,fi} chsabstand M ⁰ _{Rk,fi} charakteristischer tahl verzinkt charakteristischer tahl verzinkt charakteristischer tahl A4 / HCR	tahl verzinkt Charakteristischer Viderstand, ichtrostender tahl A4 / HCR Randabstand Cor,fi [mm] Chsabstand Sor,fi [mm] Charakteristischer Viderstand, tahl verzinkt Charakteristischer Viderstand, ichtrostender tahl A4 / HCR	tahl verzinkt 0,5 0,4 Charakteristischer Widerstand, ichtrostender tahl A4 / HCR Candabstand Candabstand	tahl verzinkt 0,5	tahl verzinkt 0,5	tahl verzinkt 0,5	tahl verzinkt 0,5	Charakteristischer Widerstand, ichtrostender tahl A4 / HCR	Charakteristischer Widerstand, tahl verzinkt Cor.,fi [Nm]			

¹⁾ Ein Befestigungspunkt ist definiert als:

- Einzeldübel,
- Dübelpaar mit Mindestachsabstand s von 50 mm ≤ s < S_{cr,fi} oder
- Vierergruppe mit Mindestachsabstand s von 50 mm ≤ s < $s_{cr,fi}$

Ist der Achsabstand der Dübel in einem Befestigungspunkt größer oder gleich dem zugehörigen Achsabstand in dieser Tabelle, gelten die charakteristischen Widerstände für jeden einzelnen Dübel.

²⁾ Nachweis gegen Versagen bei Querlast mit Hebelarm nicht erforderlich.

Nagelanker N Leistung Charakteristischer Widerstand unter Brandbeanspruchung Anhang C2

³⁾ Nur in Verbindung mit Gewindestangen M8, M10 oder M12 mindestens Festigkeitsklasse 5.8. Bei vorhandener Querkraft ist ein Nachweis für Querlast mit Hebelarm zu führen.